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Abstract. The  existence of explicit expressions for conserved vectors for the charge- 
monopole problem and  the Kepler problem is well known. The  Lie algebras of the point 
transformations under  which the equations of motion are invariant have been found more 
recently. The recent discovery of an  explicit expression for a Laplace-Kunge-Lenz-like 
vector for the equation of motion r + h ' L / r + ( h h ' + k r - ' ) i =  0, h = h ( r ) ,  from which o n e  
of the equations for the orbit is easily obtained, has prompted the question of what is t he  
Lie algebra of the point symmetries of the equation r + f ( r ) L + g ( r ) i =  0 of which each 
of the above problems is a member.  In  the case that f ( r ) - 0  i t  is well known that 
Laplace-Runge-Lenz-like vectors exist. The existence of such conser \ed vectors does not 
imply a particular algebraic structure of the Lie point symmetries of the equation of motion. 
However, the existence of such symmetries provides a systematic method for constructing 
the vectors. 

1. Introduction 

Some years ago Fradkin (1967) demonstrated that all central potential problems 
possessed the dynamical symmetries O4 and SU3.  The former followed from the Lie 
algebra so(4) (for bounded motion, so(3, 1) for unbounded motion) of the components 
of two conserved vectors under the operation of taking the Poisson bracket. From the 
nature of the potential it is evident that the angular momentum L (:= r x r, throughout 
this paper the mass has been scaled to 1)  is a conserved vector. The other conserved 
vector was a conserved vector in the plane of the motion which could be written as a 
linear combination of generalisations of the Laplace-Runge-Lenz vector (Laplace 
1799, Runge 1923, Lenz 1924) and Hamilton's vector (Hamilton 1847) of the Kepler 
problem. The latter group was obtained by using the angular momentum and by 
constructing an  appropriate generalisation of the Jauch-Hill-Fradkin tensor (Jauch 
and  Hill 1940, Fradkin 1965) of the simple harmonic oscillator problem. 

In this paper we are concerned with the connection of the symmetries of the 
differential equation governing the motion and the existence of conserved vectors 
rather than the algebraic structure of the first integrals. To this purpose the central 
result of Fradkin (1967) is that every central potential problem has a vector of 
Laplace-Runge-Lenz type in addition to the angular momentum. Peres (1979) was 
led to a restricted form of this result since he assumed a particular structure for the 
Laplace-Runge-Lenz-like vector. Yoshida (1987) demonstrated the relationship of 
Peres' result to that of Fradkin and later extended the existence of such a vector for 
all motions in the plane (Yoshida 1989). 
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Generally speaking, multidimensional nonlinear dynamical systems are not 
integrable, are lacking in symmetry and are given to chaotic evolution. However, there 
are some completely integrable nonlinear systems which have become well worn 
paradigms. The most noteworthy of these is the Kepler problem with equation of 
motion (in reduced co-ordinates) 

(1.1) 

respect to time and caret 

L and energy, the Kepler 

(Throughout this paper overdot means differentiation with 
denotes a unit vector.) 

In  addition to the conserved angular momentum vector - 
problem has two additional related conserved vectors, Hamilton's vector (Hamilton 
1847) 

(1.2) K = + - -  Pe^ 
L 

and the better known Laplace-Runge-Lenz vector (Laplace 1799, Runge 1923, Lenz 
1924) 

J = L x K = L x i + p;. (1.3) 

The latter vector may be used to obtain the orbit equation since, if the polar angle 8 
is measured from J, the scalar product J .  r leads to 

L2 
CL - J  COS e '  r =  (1.4) 

(Hamilton's vector could equally be used to obtain the orbit equation, but the derivation 
is not as elegant.) 

The Laplace-Runge-Lenz vector has been termed inessential (Kaplan 1986) since 
the conservation of angular momentum and energy implies integrability by Liouville's 
theorem (Whittaker 1944). This is certainly a valid and  correct viewpoint in so far as 
integrability is concerned. However, the Laplace-Runge-Lenz vector classically leads 
to the orbit equation (1.4) in a trivial way and  quantally provides the source of the 
hidden degeneracy in the spectrum of the hydrogen atom. Considerations of this 
nature cause us to be rather more excited than Kaplan about the existence of explicit 
expressions for vectors such as the Laplace-Runge-Lenz vector, 

Another system which has been known for a long time to possess a conserved 
vector 

which 

is the charge-monopole problem with equation of motion 

.. A r x r  AL 
r = - - -  

ri ri 
- -- 

has the conserved vector (PoincarC 1896) 

Q = L - A ; .  (1.6) 
It is usual to regard (1.6) as a generalised angular momentum (Moreira er a1 1985) 
since the surface on which the motion takes place can be obtained from (1.6) by taking 
the scalar product of J with r. As the motion is three dimensional, this is one of the 
two equations required to specify the orbit. The angle 8 between J and r is constant, 
so that the orbit lies on a right cir:ular cone with its vertex at the origin and the 
direction of its axis of symmetry is P. 
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Although Fradkin (1965) and  Yoshida (1989) have demonstrated the formal 
existence of conserved vectors of Laplace-Runge-Lenz type for any planar motion, 
the number of examples for which explicit expressions were known was limited. 
However, in the last decade the number of dynamical systems possessing explicit 
conserved vectors from which the orbit equation may be derived has been increased. 
Katzin and  Levine (1983) and  Leach (1985) derived the Laplace-Runge-Lenz-type 
vector 

J = L x ( u i  - a r )  + p i  (1.7) 

r =  - b r / p  - p i / ( r 2 u )  (1.8) 

for the time-dependent Kepler problem with equation of motion 

where u ( t )  is a n  arbitrary function of time. Then Jezewski and Mittleman (Mittleman 
and  Jezewski 1982, Jezewski and  Mittleman 1983) obtained the vector 

where z (  e )  = sio sin( 8 - T ) (  h - a ~ ) - ~  d v  and  h and cy are constants, for the Kepler 
problem with a drag law proposed by Danby (1962) which has the equation of motion 

a i  pr 
r- r 

i + 7 + 7 =  0. (1.10) 

(The notation used follows the usage of Gorringe and  Leach (1988a) rather than that 
of Jezewski and  Mittleman.) Recently Thompson (1987), in an  investigation of the 
Kepler-charge monopole problem with equation of motion 

L 
r- 

discovered the conserved vector 

L 
r 

J = L x i + - + k L .  

(1.11) 

(1.12) 

(One should note that this motion is not planar and so does not fall within the ambit 
of the results of Fradkin (1965) and Yoshida (1989).) All of these studies were 
computationally rather complicated. However, adapting a particularly simple and  
elegant method promoted by Collinson (1973), Leach (1987), Leach and Gorringe 
(1987) and  Gorringe and  Leach (1987,1988a, b, 1989a, b) were not only able to recover 
the examples cited above but also to provide whole new classes of problems for which 
a Laplace-Runge- Lenz-type vector existed in explicit form. Thereby they opened up 
the way for a direct calculation of the orbit for these problems. We mention just the 
one of these which is relevant to the purpose of this paper. The equation of motion 

L +  hh'+-  i = O  h ' ( r )  
r 

r+- ( r"I) (1.13) 

has the conserved Laplace- Runge-Lenz-type vector 

J = L x i + hL + k i  (1.14) 

where h ( r )  is an  arbitrary differentiable function of r (Leach and  Gorringe 1988). 



2768 P G L Leach and V M Gorringe 

The richness of the Kepler problem and of the charge-monopole problem in terms 
of explicit expressions for conserved quantities attracted attention to the Lie point 
symmetries of their equations of motion. For the Kepler problem with equation of 
motion (1.1) the following symmetry generators were found (Leach 1981, Prince and  
Eliezer 1981): 

(1.15) 
a a  a a  

ay az a z  ax ax ay 

a 
GI =% 

G, = .v-- X- . G, = X- - Z- 
a a  

G ~ = z - - - Y -  

The non-zero commutation relations are 

(1.16) 

from which it is evident that the Lie algebra is the direct sum a2@so(3).  In passing 
we note that G3, G, and G, follow from the invariance under rotation of ( l . l ) ,  G, 
from its invariance under time translation and G2, the generator specifically related 
to the Laplace-Runge-Lenz vector, indicates invariance under the similarity transfor- 
mation ( t ,  r )  -+ ( T ,  i :  t = C Y <  r = CY- '  r ) .  The two-dimensional algebra az  of GI  and G2 
has recently found application in the analysis of one-dimensional nonlinear second- 
order differential equations (Leach et a1 1988). 

The algebraic structure of the Kepler problem extends to the time-dependent Kepler 
problem (1.8) since they are related by a point transformation (Leach 1985). 

For the charge-monopole problem (1.5) Moreira et a1 (1985) found the generators 

7 ! 3 -  

(1.17) 

with non-zero commutation relations 

c G, 9 G21 = GI [G2, G i l = G i  [G3, G,]=-2G2 

LG4, G?l = G6 [Gs, G6I = G4 [G6, G,]=G,. 
(1.18) 

This algebra is the direct sum of the subalgebras of G I ,  G2 and  G3 and  G4, Gs and  
G6 and is sI(2, R)@so(3) .  (Moreira et a/ (1985) use so(2, 1) rather than sl(2, R ) . )  

We observe that the charge-monopole problem has a richer algebraic structure 
than the Kepler problem. This means that, as Thompson (1987) observed, they cannot 
be related by a point transformation. 

Equation (1.13) with h constant and k non-zero is just the Kepler problem (1.1). 
With k zero and h non-constant it cannot be reduced to the charge-monopole problem 
(1.5). Nevertheless (1.13) does possess a Laplace-Runge-Lenz-type vector just as (1.1) 
and (1.5) d o  and it is of interest to determine the Lie algebra associated with it. 
However, to make the results of this paper of greater generality we consider the equation 

(1.19) i + f (  r ) L +  g (  r ) r  = 0 
of which ( l . l ) ,  (1.5) and  (1.13) are particular instances. 
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2. The determining equations 

A second-order differential equation is invariant under a Lie point transformation 
generated by a symmetry generator, G, if the action of the twice extended generator, 
G”’, on the differential equation is zero whenever the differential equation holds. We 
shall perform the analysis in a Cartesian basis as it  is easier to detect computational 
errors due to the structure of the equations obtained. We define G to be 

a a  a a  
a t  ax ay ai 

G=r-++-+~-+l- 

where T, (, 77 and are functions of t ,  x ,  y and z. The twice extended operator is 

a a .. a ( 5  - 2 z i  - ij‘) - 
ax ai’ + (i‘- 2 x i  - Xj‘) -+ (;i - 2j;i - Pj‘) 

etc. The three components of (1.19) are 

x +f(yi - ij) + gx = 0 

z +f’( x j  - yxi) + gi = 0. 

y + f (  zx - x i )  + g y  = 0 

(2.4) 

The partial differential equations which determine r, 6, 77 and 5 are obtained thus. 
G‘”, (2.2), is applied to each of (2.5) with the derivatives expanded as in (2.3) and 
(2.4). All second derivatives are removed using (2.5). Since we have assumed a point 
transformation, the terms can be collected as coefficients of various combinations of 
powers of the total time derivatives x, j, and i and coefficients of linearly independent 
combinations then set to zero. This process is somewhat tedious to do  by hand, but 
it was readily handled by REDUCE. Forty-eight partial differential equations were 
obtained, twelve of which were superfluous being a twofold repetition of the six 
second-order equations for r (equation (2.6) below). We list the equations in groups 
according to the order in which they were subsequently analysed: 
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( 2 . 7 )  

8 T  ( x t  + y 7  + z i )  + 2yg-  = 0 

( X t + J q  + 25) + 2yg-  = 0 

( x t  + yv + Z i )  + 2 zg - = 0 

a t  r a x  

a 7  

a z  

a 7  
ax 

(2 .11)  
a x  a t  

a t  at7 a77 a i  z-+ x-  - y- - x-- [ - 
a z  ay ax az 
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where ' denotes differentiation with respect to r. 
The solution of equations (2.6)-(2.12) was performed block by block. Although 

the calculations are lengthy, they are routine and we merely quote the results. For 
general f and g the equation 

r + f (  r ) L  + g( r )  r = 0 (2.13) 

obviously has the algebra a , D s o ( 3 )  with a ,  representing invariance under time transla- 
tion and  so(3) the usual rotational inkariance. Specifically, the generators of so(3) are 

a a  G. = v - -  x - 
ay . a z  a.? ax ax ay 

(2.14) 
a a  d c i  

G2 = X- - z - 
1 .  

G,  = Z- -  1'- 

and the generator of a ,  is 

a 
G,=.:. 

d r  

Special cases of (2.13) with additional symmetry are 

which has the algebra a,%lso(3), the additional symmetry being 

a 
d t  

G , = 2 A t - + ( A +  K )  

AL yr r + y + - -  = 0 
r-' r' 

which has the algebra sl(2, R ) O s o ( 3 )  with 

and 

which has the same algebra, but now 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(For F <O, G5 and Gc> can be replaced by c5 and 
terms of sine and cosine functions.) 

which would be expressed in 
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The additional symmetry (2.17) for the power-law central force represents invariance 

t = a ’ A f  r =  a K T A ?  (2.23) 

under the self-similar transformation 

and  is lost if the central force is not a power law. 
The equations of motion (2.18) and  (2.20) both possess the algebra sl(2, R)@so(3)  

regardless of the values of the parameters. They may be regarded as direct extensions 
of the results of Moreira et a1 (1985) for the algebra of the charge monopole problem. 

The term ~ r r - ~  can be interpreted as a centripetal force and the term E r  represents 
a harmonic repulsor or oscillator depending upon the sign of E or a ’free’ particle if 
E = 0. The latter term does not affect the algebra nor the integrability of the equation. 
Indeed the same conserved vector exists as for (1.5), namely 

Ar P = L - -  
r 

(2.24) 

and L is also constant in both cases. We note that the motion continues to be on the 
surface of a cone. Another scalar integral 

(2.25) 

also exists. Equation (2.20) does not belong to the class of problems (1.13) treated by 
Leach and  Gorringe (1988). However, (2.18) does in the particular case that p = --A2. 
Then, in addition to the three integrals above, there is also the conserved vector 

I = -( r . 2  - y / r ’ - E r 2 )  

AL 
r 

J =  L X  i - - = P x  i (2.26) 

from which the orbit equation is just as easily obtained by taking the scalar product 
with r as was the case with (2.24). 

3. Connection between Laplace-Runge-Lenz-like vectors and symmetries 

We have seen that, when in (2.13) f ( r )  = 0 and g ( r )  is a power law, the algebra of the 
symmetries is a2@so(3) no matter the degree of the power law. However, when g ( r )  
is not a power law, G, is lost. Now, in the case of the Kepler problem G5 is usually 
associated with the existence of the Laplace-Runge-Lenz vector of that problem 
(LCvy-Leblond 1971). However, Leach (1981) demonstrated that the vector could be 
obtained from G4, which represents invariance under time translation, a property of 
any autonomous first integral. As Fradkin (1965) has demonstrated, any central force 
law will have a Laplace-Runge-Lenz-like vector and so it is evident that the presence 
of G, is not essential for its existence although it may well help in the determination 
of an explicit expression for the vector. 

In this paper, because we were interested in equations of the types ( l . l ) ,  (1.5) and  
(1.13), we have not considered the general planar problem for which Yoshida (1989) 
demonstrated the existence of a Laplace-Runge-Lenz-like vector. However, elsewhere 
(Gorringe and  Leach 1987) we showed that an explicit expression for a Laplace-Runge- 
Lenz-like vector for the autonomous equation of motion 

(3.1) r +  g i  + h 4  = 0 
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could be found by Collinson’s method (Collinson 1973) only when 

uye)+ u(e) 2 v ’ ( e )  
g ( r ,  0)  = r’ $7 

where U and V are arbitrary functions of 8. Excluding the cases for which the force 
is constant or h 0 and g a power-law potential, one finds that (3.1) possesses one 
symmetry in addition to the obvious one of the generator of time translations only when 

(3.4) 

(3.5) 

g = ( K  sin 28 + L cos 28) W (  w,)G + X (  w,)G 

h(  r, e )  = G-’ W (  w,) 

where 

) (3.6) 
d 8  

G = ( F +  K cos 28 - L sin 28)-’  ‘ exp ( E  - 2A, )  ( 5 F + K  cos2O-Ls in28  

(3.7) 
d e  

F +  K COS 28 -  L sin 28 
w , = r ’ ( F + K  c o s 2 e - L s i n 2 8 ) e x p  

and W and X are arbitrary functions of w, and A , ,  F, K and L are arbitrary constants. 
Even when the r dependence in (3.4) is put in the form of (3.2) and (3.3), which is 
possible, the freedom of choice of U ( e )  and V(8) is restricted. (The method of 
calculation follows that outlined in section 2.) 

The point which may be inferred from the two previous paragraphs is that the 
number of symmetries for a planar motion is not related to the existence of a conserved 
vector of Laplace-Runge-Lenz type at all. However, in terms of the construction of 
an explicit expression for the vector, the existence of symmetries provides a method. 
A function I (  r, e, i, 8, t )  is invariant under the action of a symmetry G if G[’]I  = 0. 
In principle we can find I as a function of four independent characteristics. The 
requirement that I be a first integral, i.e. i = 0, reduces this number to three independent 
characteristics each of which is a first integral. It is in this sense that the existence of 
symmetries is of value. It is not in the demonstration of existence but in the process 
of construction of explicit expressions for the first integrals. 

Finally we remark that one of the main results of this paper has been the determina- 
tion of the Lie algebras of the Lie point symmetries admitted by (1.19). We have seen 
that the Kepler problem shares the same algebra with any power-law potential. Moving 
away from planar motions, the algebra of the symmetries of (2.18) and (2.19) is 
independent of the values of the parameters A, p and E (excepting that A and p may 
not both be zero). By way of contrast, McIntosh and Cisneros (1970) in their study 
of the monopole-Kepler and monopole-oscillator problems take p = - A z  to ensure 
closed orbits. This choice had already been made for the former problem by Zwanziger 
(1968) so that a Laplace-Runge-Lenz-like vector could be explicitly constructed. (The 
reason for the case of construction of the vector becomes obvious from the more 
general work on the construction of Laplace-Runge-Lenz-like vectors for (1.19) by 
Leach and Gorringe (1988).) It would be interesting to see whether the relaxation of 
this condition, which is not required for the symmetries of the differential equation 
(the source of a construction base), leads to significant results for the monopole- 
oscillator problem. 
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